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ON HIGHER ORDER DYNAMICS IN LATTICE-BASED MODELS USING 

CHAPMAN-ENSKOG METHOD 

YUE-HONG QIAN* AND YE ZHOTJt 

Abstract. In this paper, we investigate the existence of higher order dynamics in lattice-based models. 

We have identified two conditions that determine whether a model would allow some Burnett-like equations 

when the Chapman-Enskog expansion is used. These two conditions are the number of the conserved 

quantities as well as the space and time discretization. We shall demonstrate these conditions by discussing 

(1) pure diffusion equation, and (2) hydrodynamic equations. While the fact that diffusion equation allows 

the higher order dynamics can be shown easily, we will illustrate that care must be taken when deriving 

Burnett-like equations for lattice-based hydrodynamics models using the Chapman-Enskog method. 
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1. Introduction. Compared to traditional methods in computational fluid dynamics (CFD), the lattice- 

based models are simple and easy to implement on computers. The advantages and disadvantages of the 

original lattice gas automata (LGA) have been well documented [1-7]. The lattice Boltzmann equation 

(LBE) was later introduced to remove some of the drawbacks [8-10]. A further simplification to the LBE is 

achieved using the BGK procedure (LBGK) [11-14]. 

In lattice-based models, it is well established that the Navier-Stokes equation can be deduced at low order 

expansion of Chapman-Enskog expansion [15]. Many authors further asserted that the Burnett-like equation 

could be obtained by performing higher order using Chapman-Enskog expansion [4,6,7]. The motivation of 

this paper is to carry out these higher order Chapman-Enskog expansion to investigate whether it is consistent 

to do so. We will first study the lattice-based model for pure diffusion model [16,17]; and demonstrate that 

higher order dynamics is aUowed in this case. We will then point out that the Burnett-like equations could 

be derived for lattice-based hydrodynamics models. Attention should be paid, however, when the classic 

Chapman-Enskog expansion is applied because of the non-commutative feature of cross derivatives of two 

time scales, these derivatives do not exist in the continuous time and space while do exist in discrete velocity 

models [18]. The number of conserved quantities is also critical for the existence of higher order equations. 

2. High Order Dynamics: Pure Diffusion. We now consider the lattice BGK models for pure 

diffusion problems where the only quantity conserved during the redistribution is the total mass. The 

propagation step is the same as lattice gas models while the collision step is just a redistribution of mass in 

all possible directions. We start with the following evolution equation [12], 

(2.1) Mx + cl,t+l) = fi(x,t) + uj(f:q(x,t)-fi(x,t)) 
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where fo is the average population of particles with velocity cj(i = 1,2,..., B) which belongs to a predeter- 

mined finite set and ui the relaxation parameter which satisfies 0 < u < 2. The local equilibrium population 

fiq(x,t) is chosen as [17], 

(2.2) f?(S,t)=wiP(x,t),      vk = ^. 

B is the number of particles' discrete velocities. This is a homogeneous equilibrium population in all velocity 

directions. The macroscopic density, denoted by p, is defined by: 

(2.3) P(x,t)=f>(*,f)=£/;'(*,<). 

The weighting factor Wi satisfies the normalization constraint: YH 
wi = 'i- Tlie choice (2.2) for the equilib- 

rium population, when used together with (2.1) and (2.3), will be shown to lead to the diffusion equation. 

We consider models with the particle velocity set in D dimension (D = 1,2 and 3). The simplest models 

take the velocity set of 2D elements: D directions along axis and D opposite directions. The rest particles 

can also be included. 

We assume a weak deviation from the local equilibrium f^q{x, t), 

(2.4) MS, t) = Jf (f, t) + ejf (S, t) + e2/i2) (*,<) + ••• 

where e is the appropriate Knudsen number. The space and time derivatives are expressed in terms of 

multiple-scale variables up to the fourth order in time (see, for example, Huang [19]), 

(2.5) da = eda 

(2.6) dt = edh + e2dt2 + ezdH + e4dti. 

When the total mass is conserved, it follows from (2.1), (2.2), (2.3) and (2.4) that, 

B 

(2.7) £^) = 0> J>0. 

Using the classic Chapman-Enskog expansion and taking into account of the discreteness of lattice model, 

we obtain the first order equation in e, 

(2.8) dtlp = 0. 

The second order equation is, 

(2.9) dt2p--^(^-l)daaP = 0. 

The equations (2.8) and (2.9), i.e., the dynamical equations from the two separated time scales 1/e and 1/e2, 

are now reconstituted to obtain the macro-dynamical equations for the model. The equation of diffusion 

equation is obtained from (2.8) and (2.9) 

(2.10) dtp = K2daap 

where the diffusivity «2 is given by 

(2.11) K2=2D{ü-l)- 
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FIG. 2.1. The dispersion relation (up to fourth order) ■&- versus k for the D3Q6 model, The open triangles, solid 

triangles, open squares, solid squares and open circles are numerical simulations corresponding to w = 0.75,1.0,1.25,1.5 and 

1.75, respectively.  The critical value u)cr is 1.0 for this model. 

We can also obtain higher order equations by carrying the Chapman-Enskog expansion further.   We 

derive the third order equation, 

(2.12) 

and the fourth order equation, 

(2.13) 

9tsP = o 

dtiP = —Aldaaßßp — Aidauuap. 

The coefficients A\, A2 and K2 in (2.10) for models including rest particles are obtained after some algebraic 

calculations, 

(2.14) * t2     U 

(2.15) 
c*/2      2     1, 
D wl     to     4 

(2.16) c\- 
W 

■ + 
u     12 )«2- 

The final fourth order equation is the following [17], 

(2.17) dtp = K2daap - Aidaaßßp - A2daaaap. 

We note that Equation 2.17 is anisotropic due to the last term. Applying the Fourier transform exp(-tit - 

ikx) (k is the wavenumber and Q the frequency) to the above equation in one-dimensional space, we get the 

dispersion relation which reads as, 

(2.18) ± = 1 + 1±k2, 
K% «2 



where K4 = A\ + A2 and K = p-. 

Numerical result is given by the Figure 2.1. The curves correspond to theoretical results K/K2 while the 

points correspond to numerical simulations of the lattice model presented above. Satisfactory agreements in 

all cases are achieved. The fourth order corrections may have effects in the regime of large Knudsen number, 

i.e., large k and small ui. Equation 2.18 is valid only for wavevector along x (or y,z) axis, so is the critical 

value u>cr = 1 for the D3Q6 numerical model [12] used for Equation 2.1. 

3. High Order Dynamics: Hydrodynamics. We now turn our attention to lattice-based hydrody- 

namics models. In the LGA, LBE, and LBGK models, both the mass and momentum are conserved. The 

common features in these models are discrete velocity space of particles, evolution steps of local interac- 

tions and neighbor-to-neighbor propagation of moving particles. Since the principle of deriving large-scale 

equations is the same and outlined in the previous section. For the sake of simplicity, we use lattice BGK 

models to illustrate the existence of high order dynamics: Burnett-like equations. In classic kinetic theory, 

Euler, Navier-Stokes, Burnett and Super-Burnett equations constitute the successive approximations of the 

Boltzmann equation in the order of Knudsen number. Like in classic kinetic theory, the lattice-based models 

for hydrodynamics use the Chapman-Enskog expansion in order to derive the Navier-Stokes equations. We 

outline the basic ingredients of the derivation. The time evolution equation is the same as section 2, except 

that the equilibrium distribution /f9 contains not only mass, but also momentum, 

.     . teq     ^ _,,  ,  CjgUg i  (ciaCiß - c2
sSaß)uav,ß ^ 

\6-1) Ji   —zpP\li-    c2    ~r 2c4 

where cs is a constant. The density p and velocity u are defined by, 

(3.2) j2fi = 'Efiq=p>  E^=E<3/r=^ 

which leads to the constraints on high order corrections />   , 

(3.3) £jf = 0,     £«3/^ = 0, j>0. 

The leading order on e yields the inviscid fluid equations, 

(3.4) dtlp + da{pua) = 0 

(3.5) dtl (pua) + dß(puaUß) = -c2
sdap 

and the second order e2 results in the dissipative terms, 

(3.6) dt2p = 0 

(3.7) dt2{pua) = v{dßß{pua) + daß{puß)) 

where v is the shear viscosity (1/ = C
2
(1/CJ — 1/2)). 

Now, in order to obtain high order hydrodynamical equations of the lattice-based models, let us look at 

the third order e3, the Taylor expansion gives the following equation, 



-(dMl + 2ciadtia + ciaCißdaß)Jl> + -Aptxtitx + 3ciadtltia + 3ciaCißdtiaß + CiaCißC^daßy)f-q 

(3.8) = -^/i3). 

Summing the underlined cross derivative <9tit2/f? in the above equation over i, we get a term, 

9ht2{p)- 

Using the first and second order Equations 3.4-3.7, we obtain two different results, 

(1). if we first take the derivative over t2 then t\, we have, 

9t2t1(p) = 0- 

(2). Reversely, we have, 

dtxt2{p) = -vda(dßß{pua) + daß(puß)) 

It means that the operators are not commutative, 

ÖSi*a(»)^öea*i(») 

where • is either p or pua. 

Note that1 the third order macroscopic equations can be also obtained by the wayevector expansion (see 

for example, van Coervorden et al. [20]). Even though the above-mentioned operators are not commutative, 

the essential point in the Equation 3.8 is the sum of the two terms. After a tedious algebraic calculation, we 

get the third order equations, 

c2 

(3.9) dt3p = -*-daßß{pua) 

c4   12      12 
(3-10) dt3(puQ) = f(-i-- + l)daßß(p). 

We check the dispersion relation up to the third order numerically in Figure 3.1 (the curves are theoretical 

predictions with Equations 3.9-3.10 and points numerical simulations). Good agreement is obtained. 

Even higher order (fourth and up) dynamics can be obtained while tremendous care has to be taken 

since more non-commutative operators are involved and results will be published elsewhere. 

4. Concluding Remarks. In this paper, we pointed out that two conditions determine whether the 

lattice-based models could or could not have higher order dynamics when classical Chapman-Enskog ex- 

pansion is used. These conditions are number of conservation laws and the space and time discretization. 

The pure diffusion model, a system with only one conserved quantity, is first presented to illustrate that the 

higher order dynamics is allowed. We then turned our attention to the lattice-based hydrodynamics equa- 

tions. With more than one conserved quantities, we note that special care must be taken to derive governing 

equations for higher order dynamics. After noting the feature of no-commutative cross time derivative, we 

demonstrate how Burnett-like equations could be obtained for lattice-based hydrodynamics models using 

the classic Chapman-Enskog expansion method. The results reported in this paper can be used to analyze 

theoretically systems where hydrodynamic description may break down, a typical example is simulations of 

the micro-electronic mechanical systems (MEMS) [21,22]. 

"The authors arc very grateful to the referee of the Phys. Rev. E for this and several other important observations. 
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FIG. 3.1. The dispersion relation (up to third order): The speed of sound versus k for the D1Q5 model, The open triangles, 

solid triangles, open squares, solid squares and open circles are numerical simulations corresponding to ui = 0.75,1.00, and 

1.50 while the curves are theoretical predictions. 
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